На правах рукописи

Васильев Владимир Игоревич

КОМПЛЕКСНОЕ КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ГЕОХИМИЧЕСКИХ ОБЪЕКТОВ НА ПРИМЕРАХ ДВУМЕРНЫХ МОДЕЛЕЙ КОЛЛИЗИИ ПЛИТ, МАГМАТОГЕННО-ГИДРОТЕРМАЛЬНОЙ СИСТЕМЫ И ЗОНЫ СУБДУКЦИИ

Специальность 25.00.09 – Геохимия, геохимические методы поисков полезных ископаемых

Автореферат

диссертации на соискание ученой степени кандидата геолого-минералогических наук

> ИРКУТСК 2009

Работа выполнена в Геологическом институте СО РАН (ГИН СО РАН)

Научные руководители: доктор геолого-минералогических наук Жатнуев Николай Сергеевич доктор геолого-минералогических наук Чудненко Константин Вадимович

Официальные оппоненты: доктор химических наук Таусон Владимир Львович доктор геолого-минералогических наук Скворцов Валерий Александрович

Ведущая организация: Институт Земной коры СО РАН

Защита состоится _____ ноября 2009 г. в _____ часов на заседании диссертационного совета Д 003.059.01 при Институте геохимии им. А.П. Виноградова СО РАН по адресу: 664033, г. Иркутск, ул. Фаворского 1а.

С диссертацией можно ознакомиться в научной библиотеке Института геохимии им. А.П. Виноградова СО РАН, по адресу: 664033 Иркутск, ул. Фаворского 1а.

Автореферат разослан _____ октября 2009 г.

Ученый секретарь диссертационного совета к.г.-м.н.

Г.П. Королева

введение

Актуальность работы. Прогресс геохимии зависит в первую очередь не от дальнейшего расширения банка аналитических данных, а от синтеза всей совокупности полевой, аналитической и экспериментальной информации, что наиболее перспективно при использовании компьютерного моделирования. Развитие методов термодинамического компьютерного моделирования в геохимии состоит в преодолении главного ограничения аппарата химической термодинамики – отсутствия пространственно-временных координат (Шарапов, 1986, 2007). В работе представлен подход к решению этой задачи, а также затрагиваются кардинальные проблемы моделирования на ЭВМ в геохимии (Карпов, 1981).

Цель исследования состоит в разработке методики комплексного компьютерного моделирования геохимических систем на основе объектноориентированного подхода и апробации ее на тематических моделях геохимических объектов. Задачи работы были поставлены в соответствии с методологическим характером выбранной цели и сформулированы следующим образом:

- 1) анализ и модернизация существующих методов и средств физикохимического моделирования;
- наработка опыта в построении разнотипных компьютерных моделей и разработке прикладных программ, необходимых при их построении;
- разработка методики моделирования геохимических объектов и апробация ее на примерах модели-схемы коллизии плит, модели магматогенно-гидротермальной системы и комплексной модели зоны субдукции;
- 4) анализ, интерпретация и оценка результатов моделирования геохимических систем.

Защищаемые положения:

- Предложенная методика комплексного компьютерного моделирования позволяет в рамках универсального объектноориентированного подхода строить модели самых различных геохимических объектов и оценивать их по предложенным критериям корректности: описательному, функциональному и событийному.
- Модель-схема коллизии плит, разработанная по предложенной методике и реализованная с помощью прикладного программного продукта Vladi Collision, позволяет, варьируя начальными и граничными условиями, рассчитывать и визуализировать различные варианты геометрической эволюции модельной системы с учетом распределения температурных полей разреза.

- Модель магматогенно-гидротермальной системы отражает основные закономерности массопереноса и минералообразования в гидротермальных системах областей развития современного вулканизма.
- 4. Разработанная комплексная компьютерная модель зоны субдукции, представленной в виде двумерной мегасистемы за счет разбиения на более чем 4000 подсистем, подтверждает гипотетические положения о Р-Т-условиях нахождения свободного флюида и его эволюции при подъеме от дегидратирующейся плиты к поверхности.

Научная новизна:

- Впервые в рамках методики единого подхода сведены вместе четыре аспекта моделирования геохимических объектов: геометрический, физический, физико-химический и динамический, что позволило увеличить параметры корректности при переходе от эмпирических моделей к компьютерным.
- Доказана принципиальная возможность использования при моделировании геохимических объектов объектно-ориентированного подхода, позволяющего максимально наглядно и удобно представлять объекты в терминах конструктивных схем единой концепции.
- 3) Получена полная двумерная физико-химическая и геохимическая картина для модели зоны субдукции: рассчитаны более четырех тысяч равновесных минеральных парагенезисов с раствором и газовой фазой, температуры и давления в каждой точке модельной плоскости. Определены области дегидратации и плавления погружающейся плиты, рассчитан перенос флюидом более 90 зависимых компонентов с глубин ~100 км к поверхности.
- 4) Построена физико-химическая модель на материале Северо-Парамуширской магматогенно-гидротермальной системы. Определены Р-Т-параметры, рассчитаны равновесные химические составы на пути конвективного движения флюида, выявлены формы переноса более 150 компонентов водного раствора и характеристики изменения вмещающих пород.

Фактическим материалом для данной работы явились общепризнанные литературные данные по химическому и минеральному составу горных пород, их физическим, петрофизическим, термодинамическим свойствам, представленные в различных справочных, монографических и журнальных изданиях. В работе также использовался фактический материал, полученный автором в полевых работах сезонов 1995–2008 гг., в процессе научно-исследовательских работ по теме «Условия и механизмы формирования благороднометального оруденения (Аu, ЭПГ) традиционных и новых типов в Саяно-Байкало-Муйском сегменте Цен-

трально-Азиатского складчатого пояса (по природным и экспериментальным данным)» (№ гос. рег. 01.2.007 05169) и при финансовой поддержке Президиумов CO и ДВО РАН (проект № 117 – 09-II-CO-08-006). Кроме этого, фактические данные по химическому составу, петрофизике и теплофизике учитываемых в моделировании природных сред были любезно предоставлены непосредственно Н.С. Жатнуевым, В.И. Гуниным (ГИН СО РАН), И.К. Карповым, К.В. Чудненко, В.А. Бычинским (ИГХ СО РАН), С.Н. Рычаговым (ИВиС ДВО РАН) и другими учеными. Практическая ценность работы. Представлены методологически единые модели таких категориально различных объектов, как процесс коллизии плит и объект термодинамической системы в толще породы. Разработанные модели для Северо-Парамуширской гидротермальномагматической системы и зоны субдукции показывают практическую пригодность методики для получения как качественных, так и количественных параметров геохимических объектов. Предлагаемые критерии корректности рекомендуется использовать для критической оценки и сравнения компьютерных моделей при решении задач по эволюции вещества в геохимических процессах. Основные положения работы использованы при разработке и чтении курсов лекций. проведении практических занятий и полевых практик на Кафедре геологии Бурятского государственного университета в 2000-2009 гг.: «Информатика», «Компьютерное моделирование», «Геодезия и картография», «ЭВТ в геологии», «Основы физико-химического моделирования в геохимии».

Публикации и апробация работы. Основные положения диссертации опубликованы в 18 печатных работах, а также докладывались на Школе-семинаре российских делегатов XXXI Международного Геологического Конгресса (НИС «Академик Иоффе», Атлантика, 2000), XIX Всероссийской конференции «Строение литосферы и геодинамика» (Иркутск, 2001), III Всероссийском симпозиуме с международным участием «Золото Сибири и Дальнего Востока» (Улан-Удэ, 2004), III Всероссийском симпозиуме по вулканологии и палеовулканологии (Улан-Удэ, 2006), Всероссийской конференции с иностранным участием в честь 50летия СО РАН и 80-летия чл.-корр. РАН Ф.П. Кренделева (Улан-Удэ, 2007), І международной конференции «Граниты и эволюция Земли» (Улан-Удэ, 2008), IV Всероссийском симпозиуме по вулканологии и палеовулканологии «Вулканизм и геодинамика» (Петропавловск-Камчатский, 2009), Научных совещаниях «Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту)» (Иркутск, 2008, 2009), ежегодных Научных сессиях Геологического института СО РАН (1998-2009) и др. Различные варианты авторских программных продуктов переданы и используются в лаборато-

риях Геологического института СО РАН (г. Улан-Удэ) и Института геохимии СО РАН (г. Иркутск).

Объем работы. Диссертация состоит из введения, пяти глав, заключения, списка литературы и приложения общим объемом 120 страниц печатного текста, 16 таблиц и 36 иллюстраций. Список использованной литературы включает 159 наименований.

Благодарности. Автор считает своим долгом выразить сердечную благодарность в первую очередь своим научным руководителям – докторам геолого-минералогических наук Игорю Константиновичу Карпову, Николаю Сергеевичу Жатнуеву и Константину Вадимовичу Чудненко за терпеливую плодотворную помощь на протяжении всех лет работы над диссертацией. Автор душевно благодарит своих учителей – д.г.-м.н. Дмитрия Ивановича Царева, д.г.-м.н. Анатолия Георгиевича Миронова, к.г.-м.н. Валерия Алексеевича Бычинского, Владимира Ивановича Гунина и всех тех, кто на протяжении многих лет помогал вначале осваивать, а затем развивать и внедрять компьютерное моделирование в практику геологических исследований.

Глава 1. Состояние проблемы

Геометрический аспект. Степень геометрической детализации модели основывается на применении метода декомпозиции. Объект при этом представляется как система агрегатов, которые, в свою очередь, состоят из узлов, а те – из деталей (Быков, 2002). Замена объемной задачи на ряд плоских долго оставалась единственным способом решения и обычно приводит к приемлемым результатам и сегодня.

Физический аспект. Численные методы исследования математической модели предполагают создание компьютерной программы, моделирующей изучаемое явление. Использование компьютера – часто единственный способ получения следствий из математической модели. Компьютерный физический эксперимент фактически является физическим экспериментом над математической моделью исследуемого объекта, проводимого с помощью компьютера (Майер, 2009).

К классическим схемам данного аспекта моделирования могут быть отнесены: модель охлаждения интрузива Л.М. Кэтлса, модель теплопереноса А.В. Кирюхина и В.М. Сугробова, комбинированные модели Д.В. Гричука, М.В. Борисова и А.В. Тутубалина и др.

Физико-химический аспект основывается на применении методов термодинамического моделирования. В настоящее время существует два подхода к решению проблемы расчета химического равновесия (полного, промежуточного, метастабильного, частичного) в сложных многокомпонентных, многофазовых и многоагрегатных природных системах. Первый основан на формализме стехиометрических уравнений

реакций и константах их равновесия – расчет по реакциям, второй – на постановке и решении задач химического равновесия как задач выпуклого программирования - метод минимизации. Расчет по реакциям использовался химиками и технологами в докомпьютерную эру развития науки. Среди зарубежных геохимиков программы, в основу которых положен метод констант равновесия, получили широкое распространение и применение в изучении процессов взаимодействия вода – горные породы главным образом благодаря пионерским работам Г. Хельгесона (Helgeson, 1967, 1968, 1969, 1970; Helgeson et al., 1969, 1970). Им к началу 1970-х годов были разработаны математическая модель, вычислительный алгоритм, методы формирования базы термодинамических данных с участием компонентов водных растворов электролита; создана компьютерная программа; а, главное, показан принципиально новый подход к моделированию физико-химических процессов с учетом их необратимости на примере модели образования метасоматической зональности гидротермальных месторождений.

Постановка задач химического равновесия в формулировке выпуклого программирования имеет определенные преимущества: в каждом варианте решения оно дает на выходе, по крайней мере, в два раза больше базовой термодинамической информации. Помимо мольных количеств независимых компонентов (или других единиц содержания), включая фазовый состав, мы, используя минимизацию, получаем численные значения химических потенциалов независимых компонентов и детальную характеристику решений, с помощью которых можно сделать вывод о достижимости глобального минимума и внутренней согласованности исходных термодинамических данных тех веществ, которые вошли в оптимальное решение. Имеется и ряд других возможностей термодинамического моделирования в формулировке выпуклого программирования, недоступных методу реакций, что объективно показано во многих работах (Карпов, 1981; Карпов и др., 1981, 1987, 1991; Бакшеев, Карпов, 1984, 1988; Чудненко и др., 1987, 1988, 1999; Kulik, 2000, 2002).

Глава 2. Методика моделирования

Компьютерные модели реальных геохимических объектов должны отображать основные закономерности поведения исследуемого природного прототипа на основании применяемых вычислительных методов и алгоритмов с учетом как можно большего количества наблюдаемых, экспериментально определенных или предполагаемых эмпирических характеристик. Будем понимать под термином объект – совокупность характеристик рассматриваемого явления. Каждый объект имеет следующие характеристики:

- свойства размеры, состав, положение в пространстве и т.д.;
- *методы* способы изменения свойств объекта;
- события внешние воздействия, на которые объект может реагировать определенными для него методами.

Следовательно, построение модели объекта – это описание необходимых свойств, потенциальных событий и методов, которыми объект будет реагировать на эти события. Точность и полнота модели определяется отношением учтенных характеристик к их общему количеству и может быть оценена тремя параметрами, характеризующими ее корректность: описательным, событийным и функциональным.

Допустим, что физический (природный) объект обладает множеством свойств $P \supset \{1...p\}$ и множеством событий $E \supset \{1...m\}$, на которые он может реагировать множеством методов $M \supset \{1...m\}$. Модель этого объекта может учитывать не более p_m свойств, e_m событий и m_m методов, где, как правило, $p_m << p$, $e_m << e$ и $m_m << m$. Тогда *описательная корректность* модели K_P , равная отношению p_m/p учтенных в модели свойств к их реальному количеству, будет определять статическое соответствие модели реальному объекту. Событийная корректносты $K_E = e_m/e$ оценивает в модели учет влияния внешних факторов, а *функциональная корректность* $K_M = m_m/m$ позволяет оценить соответствие динамики модели поведению реального объекта (эволюции объекта). Стремление параметров корректности к единице свидетельствует о том, что сложность модели приближается к сложности природного объекта.

Предлагаемая комплексная методика моделирования позволяет максимально увеличить величины параметров корректности на этапе перехода от эмпирической модели к компьютерной способом поэлементного учета характеристик. Она включает четыре взаимосвязанных этапа: геометрический, физический, физико-химический и динамический.

<u>Геометрический этап</u>. Начиная создание модели, необходимо построить геометрическую схему, которая должна наглядно передавать свойства объекта, как в пространственном, так и в понятийном аспекте, обеспечивая высокий уровень описательной корректности. Основные шаги этапа заключаются в следующем. Во-первых, необходимо выбрать геометрическую размерность модели. Во-вторых, любая достаточно сложная модель представляет собой *мегасистему*, состоящую из конечного количества *подсистем*, геометрические соотношения между которыми также необходимо предусмотреть. В общем случае это производится разбиением моделируемого пространствана геометрические фигуры, каждая из которых соответствует определенной подсистеме со своими физическими и химическими параметрами. В-третьих, для со-

блюдения соответствия модель-объект на макроуровне, необходимо произвести дискретизацию пространства, разделив все имеющееся модельное пространство на *зоны*, состоящие из конечного количества подсистем. Данные зоны должны соответствовать принципиальным природным обособлениям в составе моделируемого объекта.

<u>Физический этап</u> предусматривает расчет физических параметров каждой подсистемы, а также физические аспекты взаимодействия подсистем между собой. Рассмотрим суть физического этапа на примере моделирования тепломассопотоков в гидротермальной системе. Набор физических характеристик подсистем в этом случае должен включать массу, плотность, объем, пористость, а также теплофизические свойства их сред. Начальными и граничными условиями физического этапа являются начальные градиенты температуры и давления, проницаемость границ и режим теплообмена подсистем и модели в целом и т.д. В качестве расчетных параметров, как правило, выступают температура и давление.

Предлагается следующий метод расчета распределения температурных полей в двумерном модельном пространстве. Сначала рассчитываем кондуктивную составляющую теплопереноса на основе стандартных дифференциальных уравнений (Аверкин, Шарапов, 1986). Коэффициент теплопроводности при температуре Т для пород магматического состава можно рассчитывать по зависимости Тихомирова (Теплофизические свойства..., 1987). Для расчета теплоемкостей подсистем удобно использовать стандартное ступенчатое уравнение, описывающее зависимость теплоемкости от температуры Т (Чудненко, 2005). Также должна учитываться поправка на изменение теплоемкости, обусловленная эффектом разупорядочения в зависимости от температуры для подсистем, содержащих ряд минералов, таких как калиевый полевой шпат, доломит, геленит (Чудненко, 2005). При необходимости после расчета стационарного кондуктивного распределения температуры можно перейти к расчету конвективного теплопереноса, имеющего место при движении поровых растворов. Для пористой водонасыщенной среды в двумерной модели система дифференциальных уравнений определена в работах (Тихонов, Самарский, 1975; Жатнуев, Гунин, 2000) при следующих допущениях: поток через трещиноватую или пористую формацию подчиняется закону Дарси; движение раствора – двумерное, что дает возможность учета анизотропии среды по проницаемости; раствор и вмещающие породы находятся в состоянии термического равновесия. Для решения системы уравнений, описывающих процессы конвективного теплопереноса в двумерной модели, необходимо задать соответствующие начальные и граничные условия и использовать численные ме-

тоды, позволяющие рассчитать значения искомых функций в каждой подсистеме модельной плоскости. В нашем случае для численной реализации поставленной задачи можно использовать абсолютно устойчивый локально-одномерный метод решения (Тихонов, Самарский, 1975) с последующим методом установления с нижней релаксацией (Тарунин, 1990).

Литостатическое давление в моделируемых подсистемах можно рассматривать как линейную функцию количества геометрически вышележащих подсистем и плотностей их сред. Гидростатическое давление раствора (флюида) входит в набор учитываемых физических величин в случае наличия в составе подсистемы протяженных по вертикали трещин, где раствор находится в объемной фазе, и рассчитывается аналогично.

<u>Физико-химический этап</u> предусматривает расчет исходных равновесных составов подсистем, которые рассматриваются как физико-химические резервуары, изначально не взаимодействующие друг с другом. Входными данными для таких расчетов будут являться рассчитанные на предыдущем этапе температура и давление в каждом резервуаре, а также набор и концентрации независимых компонентов. Список независимых компонентов формируется, исходя из общей тематики моделирования. За основу принимается набор основных петрогенных элементов, входящих в состав оксидов стандартного силикатного анализа: Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P, O, H, с добавлением компонентов, поведение которых необходимо исследовать в модели. Концентрации независимых компонентов каждой зоны (вектор b) определяются следующим образом. Сначала выбирается соответствующий зоне эмпирический вещественный состав, полученный в результате анализов проб или по литературным данным. В случае моделирования глобальных объектов (например, в случае геодинамических моделей) необходимо выбирать наиболее общий исходный состав (статистически усредненный из как можно более представительной выборки). В случае же построения модели локального геохимического объекта с достаточно изученным вещественным составом, последний должен быть отражен наиболее полно. К базовому составу добавляются содержания необходимых в модели компонентов в той химической форме, в какой они анализировались.

Если температура и давление каждой подсистемы индивидуальны, то набор независимых компонентов должен быть постоянным для всей мегасистемы в целом, тогда как их концентрациями можно варьировать, исходя из принятых химических составов выбранных зон.

Расчет равновесных составов резервуаров предлагается про-

изводить методом минимизации потенциала Гиббса – G(T, P) на основе программного обеспечения, содержащего достаточно полные базы термодинамических данных зависимых компонентов, необходимых в модели. В качестве программного средства, реализующего физикохимический аспект моделирования, мы остановили свой выбор на программном комплексе «Селектор», с помощью которого доступно решение широкого круга задач, связанных с изучением физико-химических процессов в геохимии, петрологии и других областях. Модуль формирования моделей мегасистем позволяет решать задачи, связанные с исследованиями физико-химической эволюции взаимодействующей совокупности резервуаров по координате времени (Чудненко, 2007). Результатом этого этапа моделирования должны являться расчетные равновесные химические составы каждого резервуара (подсистемы).

<u>Динамический этап</u>. Начальными и граничными условиями здесь являются элементы дискретизации временной области. Главное из рассматриваемых событий при исследовании динамики объекта – это временные изменения, поэтому в первую очередь важно предусмотреть методы объекта как функции вектора времени. При этом учитываемые методы можно разделить на две категории по масштабу приложения:

- межзонные методы контролируют изменение свойств зон модели;
- *межрезервуарные методы* описывают взаимодействие резервуаров и изменение их свойств.

Первая категория иллюстрируется моделью-схемой коллизии плит, описанной в главе 3, вторая – моделями гидротермальной системы и субдукции в главах 4 и 5.

Глава 3. Модель-схема коллизии плит

В основу идеи модели положим простое распределение поступающего с движением плиты вещества в виде трех зон (рис. 1): треугольной верхней (гора), треугольной нижней (погружаемая в мантию часть) и прямоугольной центральной (мощность плиты). Модельная система симметрична относительно оси *с*.

Если скорость движения плиты равна U, то площадь ΔS поступающего за период времени Δt плитного вещества равна $\Delta S = \Delta a \cdot M$, где $\Delta a = U \cdot \Delta t$ и M – мощность плиты. Для соблюдения условий подобия введем несколько коэффициентов, контролирующих форму и размеры зон.

Распределение вещества между треугольниками l и 2 будет контролироваться коэффициентом баланса K_B , который представляет собой расход поступающего вещества на треугольник l в долях от единицы. Соотношение высоты H и основания L треугольника l контролирует коэффициент K_V , который пропорционален вязкости вещества пли-

ты. Приращение длины основания треугольника *l* за время Δt рассчитывается по уравнению: $\Delta L = \frac{2K_{\nu}K_{B}\Delta S + HL}{H-L}$, а приращение высоты треугольника *l* за время Δt – по уравнению: $\Delta H = \frac{2K_{B}\Delta S(1-K_{\nu})}{L+\Delta L}$. Приращение площади нижнего треугольника *2* за время Δt будет равно: $(1-K_{B})\Delta S$.

Форма нижнего треугольника (соотношение глубины D и длины основания B) будет контролироваться как коэффициентом вязкости K_V , так и коэффициентом экструзии мантии K_E , зависящим от плотностей мантии и плиты. Приращение длины основания нижнего треугольника ΔB и глубины погружения ΔD за время Δt рассчитываются по уравнениям: $\Delta B = \frac{2K_V K_E (1-K_B)\Delta S + DB}{D-B}$ и $\Delta D = \frac{2(1-K_B)\Delta S (1-K_V K_E)}{B+\Delta B}$.

По достижении определенной высоты H_{max} треугольника l (горы), стадия орогенеза сменяется стадией денудации, и появляется треугольная зона 3, представляющая собой сносимый (осадочный) материал. На этом этапе увеличение площади верхнего треугольника (l + 3) идет только за счет увеличения длины стороны F треугольника 3. Как видим, все вышеприведенные методы изменения свойств принятых зон,

выраженные через уравнения, содержат функцию времени. Модель учитывает два события: течение времени и достижение «горой» высоты Н_{тах}. Вследствие изменения форм и размеров зон в процессе эволюции модели будет меняться и количество подсистем, входящих в состав каждой зоны. Следовательно, мы должны в каждый моделируемый момент времени возвращаться на геометрический этап или делать это через какой-то временной шаг (Васильев, Жатнуев, 2007). Данная модель-схема была реализована автором в программный продукт Vladi Collision на языке C++..

Рис. 1. Геометрическая схема распределения вещества при исследовании динамики коллизии двух плит.

Глава 4. Модель магматогенно-гидротермальной системы

Модель имеет вид проточного физико-химического реактора с расчетным начальным равновесным магматическим флюидом, который

12

в процессе линейного движения просачивается через конечное число резервуаров, каждый из которых имеет собственный химический состав, температуру и давление. Под «флюидом» в данной работе подразумевается группа подвижных фаз «раствор + газ». Все резервуары характеризуются

набором единым независимых компонентов, исходные содержания которых для каждого резервуара задаются при постановке Задачей задачи. моделирования является расчет равновесных концентраций зависимых компонентов в каждом резервуаре. а также расчет состава флюида на выходе из последнего резервуара. Модель

Рис. 2. Схема массопереноса модели (проточный реактор). Обозначения: МО - магматический очаг; P₁, P₂, P_N физико-химические резервуары; Фи – исходный флюид, равновесный с веществом очага в его Р-Т условиях; ФК конечный флюид на выходе из последнего резервуара; Фп – привносимое в некоторый резервуар вешество (данный параметр опционален, в случае привноса вещества сначала рассчитывается равновесие резервуара с привнесенным веществом, а затем с веществом флюила).

может усложняться притоком внешнего вещества в некоторые резервуары – в этом случае сначала рассчитывается равновесие резервуара с привнесенным веществом, а затем – с веществом флюида (рис. 2). Равновесные концентрации зависимых компонентов рассчитываются методом минимизации свободной энергии Гиббса. Для модели необходимы следующие исходные данные: температура, давление и химический состав вещества в магматическом очаге, химические составы каждого резервуара и Р-Т условия трассы движения флюида, заданные порезервуарно или функцией.

В качестве примера рассмотрена конкретная модель подъема магматического флюида на материале, полученном при изучении Северо-Парамуширской гидротермально-магматической системы. За вещественную основу модели был принят химический состав пород в разрезе скважины ГП-3 по данным исследования шлама и керна (Рычагов и др., 2002). Из данного состава в качестве независимых компонентов модели выбраны следующие элементы: Si, Al, Fe, Mg, Ca, Na, K, S, C, H и O. Добавлены рудные компоненты (Au, Ag, Hg, Cu, Pb, Zn, Sn) и Cl. Для

последних взяты их кларковые содержания (Справочник по геохимии..., 1990). Анализы по скважине даны для 22-х точек по глубине (от 64 до 2500 м), следовательно, были приняты 22 резервуара с нумерацией снизу вверх (в направлении движения флюида). Масса каждого резервуара принята равной 1 кг. Состав первичного магматического флюида был рассчитан из равновесия чистой воды со справочным средним составом андезита (Богатиков и др., 1987) при 900°С и 772 бар, что в данных условиях соответствует глубине 3000 м. В резервуары с 20 по 22 (глубины 372 – 64 м) дополнительно вводился метеорный раствор, состав которого был усреднен из справочных литературных данных.

Температуры резервуаров интерполировались полиномиальной интервальной регрессией из данных (Белоусов и др., 2002). Литостатическое давление в резервуарах рассчитывалось исходя из принятой средней плотности пород 2,57 г/см³. Петрофизические свойства пород в разрезе скважины ГП-3 были предоставлены С.Н. Рычаговым.

Зависимые компоненты были отобраны из баз данных ПК «Селектор». Это 170 конденсированных фаз, 155 компонентов водного раствора и 9 компонентов газовой фазы. Модель была рассчитана для подъема 1 кг флюида. Расчет показал, что в резервуарах с 1 по 16 (глубины от 2500 до 1090 м) флюид находится только в газовой фазе, а на-

чиная с 20 резервуара (глубины от 372 до 64 м) – только в жидкой. На глубинах от 800 до 550 метров (резервуары 17 – 19) обе фазы сосуществуют. Характерно, что первичный флюид массой 1 кг попадает в первый резервуар (глубина 2500 м), и, как видно из диаграммы (рис. 3), его масса в следующем же резервуаре (2340 м) уменьшается на порядок, порода насыщается газами, в основном кислородом и соединениями серы.

Расчет показал, что в резервуарах с 17 по 22 (глубины от 800 до 64 м) существуют ненулевые концентрации 110 зависимых компонентов. Компоненты породообразующих элементов по поведению можно условно разделить на три группы. Концентрация в растворе компонентов

Рис. 3. Расчетное изменение массы флюида (раствор + газ) по глубине. Маркерами показано расположение модельных резервуаров.

первой группы относительно высока на глубинах 800–700 м, а к поверхности уменьшается практически до полного отсутствия. Это справедливо для соединений Si, Fe в хлоридной форме, Na и K. Из рудных сюда можно отнести соединения Au, Cu и Hg. Ко второй группе отнесем компоненты с противоположным поведением – их концентрации в растворе существенно возрастают к поверхности. Это соединения Ca, a из рудных – Ag, Pb и Zn. Третья группа характеризуется максимальными концентрациями на средних для раствора глубинах – от 600 до 200 м. Ниже и выше этого интервала их концентрации незначительны. Это Al, Fe в свободной форме и Mg, а из рудных элементов – Sn.

Ненулевые равновесные минеральные концентрации в различных резервуарах характерны для 35 конденсированных фаз. Рассмотрим рудные компоненты. Золото, серебро и ртуть значительных концентраций конденсированных фаз не образуют. Медь присутствует в виде халькопирита (интервал 372–64 м, до 0,031 масс. %), тенорита (интервал 1310–1090 м, до 0,015 масс. %), куприта (глубина 800 м, 0,011 масс. %) и халькозина (глубина 701 м, 0,012 масс. %). Единичное ненулевое содержание самородной меди зафиксировано на глубине 550 м. Цинк присутствует в виде цинкита (интервал 1646–550 м, до 0,029 масс. %) и сфалерита (интервал 372–64 м, до 0,042 масс. %). Олово на глубинах ниже 1300 м равновесно в самородном виде (до 0,009 масс. %), выше этой отметки – в виде касситерита (до 0,010 масс. %).

В целом, расчет показал пригодность данной концепции для моделирования массопереноса и минералообразования в магматогенногидротермальных системах. Результаты достаточно хорошо соответствуют литературным и природным данным (Васильев, 2009).

Глава 5. Модель зоны субдукции

Модель зоны субдукции является наиболее проработанной в соответствии с предложенной методикой, поэтому в данной главе дается наиболее полное описание последовательности этапов моделирования, начиная с постановки задачи.

Несмотря на длительную историю изучения вулканизма островных дуг и активных континентальных окраин, геотектонических позиций и глубинного строения зон его проявления, многие аспекты генерации магм и формирования геохимических характеристик магматических пород все еще остаются в значительной мере неопределенными. Ключевыми являются два основных вопроса (Авдейко и др., 2001):

- 1) что является источником магм, то есть «что плавится и где?»;
- 2) что является причиной плавления дополнительное тепло, снижение давления или привнос флюидов?

Одни авторы (Добрецов и др., 2001) полагают, что плавится

субдуцируемая океаническая кора, другие (Kobayashi, 1981 и др.), – что плавится как океаническая кора, так и основание мантийного клина. Третьи считают, что плавится только вещество мантийного клина над субдуцируемой пластиной под воздействием воды и других летучих компонентов, отделяющихся от погружающейся океанической коры (Kushiro, 1975; Авдейко, 1994). Следовательно, поставленную задачу можно разделить на две составляющих:

- Расчет физико-химически и математически обоснованных количественных соотношений Р-Т условий и равновесных концентраций минеральных парагенезисов всей модельной области.
- Определение Р-Т-условий нахождения свободного флюида и расчет физико-химической эволюции вещества при его подъеме от этих областей к поверхности.

В свете данной проблемы была разработана и рассчитана модель распределения вещества и тепла для обстановки зон субдукции, включающая расчет подъема свободного флюида от зоны частичного плавления (~ 100 км) к поверхности.

<u>Геометрический анализ и входные составы зон модели</u>. Рассматриваемая в модели область представляет собой двумерный вертикальный разрез вкрест простирания зоны субдукции на глубину 100 км и горизонтальной протяженностью 40 км. Модельное пространство было разбито более чем на 4000 подсистем размером 1х1 км, для каждой из которых рассчитаны температура, давление и химический состав. Целые количества подсистем были объединены в условно принятые зоны, каждая из которых характеризуется собственным химическим составом, плотностью и пористостью. Принципиальное расположение зон заимствовано из работ (Winter, 2001; Richards, 2003) и представлено на рис. 4.

Согласно положению методики о предпочтительности наиболее общих исходных данных, входные химические составы принятых зон модели определялись на основании пропорционального соединения в них стандартных составов оболочек (слоев) континентальной, субконтинентальной, океанической коры и астеносферы. Такой «концептуальный состав» модельных зон приведен в таблице 1. Рассмотрим выделенные зоны.

Зона A («asthenosphere») имитирует верхнюю часть мантии валового пиролитового состава. Состав зоны SML («sub-continental mantle lithosphere») усреднен из литературных данных по «континентальному базальтовому» слою. Зона СС («continental crust») соответствует «гранитному» слою континентов. Принято, что континентальные зоны SML и СС не содержат метеорных вод ниже глубины 100–150 метров,

то есть, применительно к условиям модели, не содержат воды в объемной фазе. Зоны ОС («oceanic crust») и S («sediments») представляют соответственно океаническую кору и аккреционный клин морских и вулканогенных осадков.

Рис. 4. Общая схема модели с наложенными расчетными изотермами (слева) и изобарами (справа). Условные обозначения: 1 – sediments (S), 2 – continental crust (CC), 3 – sub-

сповные обозначения. 1 – sediments (3), 2 – continental clust (СС), 5 – subcontinental mantle lithosphere (*SML*), 4 – oceanic crust (*OC*), 5 – oceanic mantle lithosphere (*OML*), 6 – asthenosphere (*A*). Изолинии: 7 – температуры (°С), 8 – давления (бар).

Принято, что поры заполнены морской водой. Пористость рассчитана по справочной литературе. Зона ОС по химическому составу отвечает комбинации «океанического базальтового» (79.60%), «океанического вулканогенного» (13.92%) и «океанического осадочного» (3.52%) слоев с обводненными порами (2.96%). Зона S комбинирует в себе вулканогенные (72.42%) и морские (14.73%) осадки и насыщена водой до 12.85 масс. %. Состав морской воды нормирован из литературных данных. Зона ОМL («осеапіс mantle lithosphere») представляет

собой переходную к астеносфере зону «базальтового» слоя океанов и свободной воды не содержит. Десятые и сотые доли в концептуальных составах зон появились вследствие пересчета от объемных процентов к массовым.

Слой	А	SML	CC	OML	OC	S	Водонасы- щенность
Океанический осадочный	-	-	-	-	3.52	14.73	20.00
Океанический вулканогенный	-	-	-	-	13.92	72.42	25.00
Океанический базальтовый	-		-	100	79.60	-	1.50
Континентальный гранитный	-	-	100	-	-	-	0.00
Континентальный базальтовый	-	100	-	-	-	-	0.00
Астеносфера (пиролит)	100		-	I	I	-	0.00
Морская вода	-	-	-	-	2.96	12.85	100.00

Табл. 1. Концептуальный состав принятых в модели зон, масс. %.

<u>Физический этап моделирования</u>. В расчетах полей температуры использовалась авторская модификация известного метода Гаусса-Зейделя, включающая точки с фиксированными значениями. Модификация заключается в том, что для некоторой совокупности N членов исходной матрицы (точек плоскости с определенными координатами) задаются постоянные значения, и пересчет этих значений в итерациях не происходит. Совокупность N выпадает из итерационных расчетов, но значения ее членов влияют на окружающие. Влияние постепенно ослабевает с удалением от фиксированной точки. Данное развитие метода Гаусса-Зейделя было реализовано в виде авторского программного продукта Vladi DiStat, который позволяет рассчитывать и визуализировать двумерные стационарные распределения интенсивных физических величин (в данном случае температуры) при влиянии частных коэффициентов с учетом фиксированных точек и граничных условий.

В нашем случае фиксированными точками являлись подсистемы поверхностного уровня (4°С и 20°С для дна океана и континента соответственно) и подсистемы нижнего уровня астеносферы (1300°С), подсистемы корового «вулканического очага» (400°С) и другие. Значения температуры для подсистем левой и правой границ модели, а также подсистем нижнего уровня зон ОС и ОМL рассчитывались рекурсивно. Температуропроводности зон при стандартных условиях сначала рассчитывались по диаграммам (Теплофизические..., 1987), затем, с использованием уравнения Тихомирова, – для частных температур подсистем. Расчетное распределение температурных полей модели показано на рис. 4 (слева).

Литостатическое давление рассчитывалось, исходя из плотностей подсистем, и в нижней части разреза достигло ~ 30 кбар. Полученные изобары показаны на рис. 4 (справа).

<u>Физико-химический этап моделирования</u>. Наборы и содержания независимых компонентов зон и, следовательно, подсистем модели были сформированы в соответствии с методикой, исходя из принятых составов зон. Не ставя себе задачу исследования параметров распределения редких и рассеянных элементов, мы ограничились выбором 13-ти независимых компонентов.

Под аборевиатурой зоны показана ее плотность (г/см ⁻).							
Контононт	Α	SML	CC	OML	OC	S	
KOMIIOHEHI	ρ=3.3	ρ=2.7	ρ=2.5	ρ=3.2	ρ=3.0	ρ=2.2	
Si, моль/кг	6.68	9.18	10.70	8.25	7.90	6.71	
Al, моль/кг	0.73	2.82	3.08	3.05	2.88	2.28	
Fe, моль/кг	2.12	1.32	0.80	1.42	1.34	1.03	
Mg, моль/кг	9.10	1.59	0.75	1.96	1.81	1.26	
Са, моль/кг	0.44	1.45	0.69	2.01	2.16	2.76	
К, моль/кг	0.04	0.28	0.63	0.05	0.07	0.15	
Na, моль/кг	0.18	0.76	0.89	0.84	0.82	0.77	
Н, моль/кг	0.22	1.56	0.78	0.77	4.47	17.00	
О, моль/кг	26.59	28.64	29.70	27.84	28.65	31.34	
S, моль/кг	0.0000	0.0281	0.0327	0.0181	0.0176	0.0156	
С, моль/кг	0.0002	0.0572	0.1313	0.0000	0.1840	0.8759	
Cl, моль/кг	0.0001	0.0020	0.0060	0.0000	0.0161	0.0699	
Е. моль/кг	0.0001	0.0089	0.0276	0.0095	0.0106	0.0147	

Таблица 2. Независимые компоненты условных зон модели.

Рис. 5. Расчетное распределение фазы раствора, газовой фазы и свободного флюида в моделируемой мегасистеме, масс. %.

В их состав вошли элементы оксидов стандартного силикатного анализа: Si, Al, Fe, Mg, Ca, Na, K, H и O, дополненные летучими: S, C, Cl и F (табл. 2). Зависимые компоненты системы были отобраны из баз данных ПК «Селектор». Это 158 возможных конденсированных фаз, 98 компонентов водного раствора и 19 компонентов газовой фазы. Расчет на ПК «Селектор» производился методом минимизации изобарноизотермического потенциала G(T, P) для более 4000 вариантов. Р-Тусловия и вектор *b* каждого варианта соответствовали геометрическому месту подсистем модели.

По всей мегасистеме в целом расчет показал возможность равновесных ненулевых концентраций 49 конденсированных фаз, 61 компонента водного раствора и 6 компонентов газовой фазы. Для всех фаз и компонентов были построены диаграммы концентраций в модельной плоскости. Расчет показал также, что в 2160 резервуарах в равновесии с конденсированными фазами имеется фаза водного раствора и в 786 – газовая фаза. Чаще всего они взаимоисключают друг друга. Обратим внимание на поля существования свободного флюида в области дегидратации погружающейся плиты на глубинах 50–100 км (рис. 5).

Рис. 6. Расчетная Р-Т диаграмма распределения свободного флюида с линиями солидуса и ликвидуса базальта (Перчук, 1973). Квадратами обозначены три условно выделенные зоны повышенного содержания свободного флюида.

На Р-Т-диаграмме можно выделить три области повышенного содержания свободного флюида, которые попадают в два участка частичного и один участок практически полного плавления «мокрого» базальта (рис. 6). Это согласуется с литературными данными (Перчук, 1973; Добрецов и др., 2001).

<u>Динамический этап моделирования</u>. Расчет полной статической картины распределения вещества модели позволил перейти к исследованию физико-химического взаимодействия подсистем между собой для моделирования подъема флюида (группы подвижных фаз).

Для этого автором использовался метод последовательного проточного реактора с 20 резервуарами, расположенными снизу вверх в вертикальном направлении вдоль правой границы мегасистемы.

Группа подвижных фаз (флюид) включала газовую фазу и раствор. Геометрическая область максимальных концентраций свободного флюида в условиях дегидратации пород океанической плиты соответствует на Р-Т диаграмме ~800°С и 30360 бар. Эти условия приняты для 1-го резервуара.

За состав исходного флюида принят расчетный равновесный свободный флюид, соответствующий условиям погружения плиты на глубину 95–100 км (резервуар 1). Параметры последнего 20-го резервуара (глубина 5 км) составили 84°С и 1250 бар. Характеристики принятых в модели подъема флюида резервуаров приведены в табл. 3.

№ резервуара	Глубина, км	T, ℃	Р, бар	Зона	
20	5	84	1250		
19	11	256	2750		
18	16	376	4000	Continental crust (CC)	
17	21	441	5250		
16	26	508	6500		
15	31	578	7770	Subcontinental mantle	
14	37	661	9390	lithosphere (SML)	
13	43	744	11070		
12	48	814	12720		
11	53	886	14370		
10	58	959	16020		
9	63	1024	17670		
8	68	1077	19320	Asthenosphere (A)	
7	73	1131	20970		
6	78	1115	22620		
5	83	1052	24270		
4	88	986	25920		
3	93	908	27570		
2	97	846	28860	Occupie crust (OC)	
1	100	786	30360	Oceanic clust (OC)	

Таблица 3. Параметры модельных резервуаров при расчете подъема флюида.

На рис. 7 приведен расчетный характер изменения содержаний компонентов флюида на разных глубинах относительно от его первоначального состава на глубине 100 км.

Рис. 7. Изменения концентраций независимых компонентов флюида, нормированные к исходному составу. Шкала концентраций – логарифмическая.

Из диаграммы очевидна тенденция к увеличению концентраций большинства компонентов по мере подъема флюида в верхние горизонты, что наиболее характерно для натрия, магния и железа, в меньшей степени – для кальция, алюминия, серы и галогенов.

Исключение составляют кремний, наиболее интенсивно расходующийся на поддержание силикатных фаз уже в астеносферном клине и в меньших масштабах – калий, но уже на уровне коровых резервуаров. Также важным результатом моделирования эволюции флюида явилось расчетное отсутствие равновесных фаз раствора и газа в астеносферном клине в интервале глубин 60–85 км, где компоненты флюида конденсируются в твердые минеральные фазы или расплав.

Расчетные минеральные фазы по характеру изменений и приуроченности к конкретным резервуарам можно весьма определенно разделить на четыре группы. Критерием такого разделения выступают, во-первых, геометрическое место (интервалы) нахождения измененных и неизмененных минеральных фаз, а во-вторых, количественные показатели изменения содержания того или иного минерала. В первую группу входят минералы, вариации содержаний которых приурочены к верхним частям литосферы. В качестве примера минералов этой группы приведем кварц, калиевый полевой шпат, гематит, энстатит. Амплитуда изменений содержаний минералов этой группы относительно высока и лежит в пределах 8–16 масс. %. Вторая группа минеральных фаз, напро-

22

тив, претерпевает значительные (до 8–16 масс. %) изменения в «нижних» резервуарах (до 14-го включительно). Их содержание падает в 3–4 резервуарах, затем колеблется до 14-го резервуара, после которого изменения прекращаются. Это такие минеральные фазы как периклаз, оливин, вюстит и магнетит. Третья и четвертая группы, в отличие от первых двух, характеризуются невысокими амплитудами вариаций составов (менее 1 масс. %), но качественно повторяют их поведение. Минералы третьей группы изменяются в резервуарах выше 14-го, четвертой группы – в нижележащих резервуарах.

Наибольший интерес вызывает изменение в поведении практически всех конденсированных фаз на рубеже 14-го резервуара, который в модели соответствует глубине 35 км и переходу «астеносфера – нижняя кора». Причиной этому, несомненно, служит резкое различие в составах модельных зон «А» и «SML», а также значительный градиент температуры на данном участке вертикального движения флюида.

<u>Основные выводы по модели зоны субдукции</u>. Для таких длительно живущих объектов, как зоны субдукции, распределение интенсивных параметров можно с достаточной степенью уверенности считать стационарным. Поэтому применение расчетного стационарного распределения температурных полей на основании совокупности точек с эмпирически или теоретически известными значениями, на наш взгляд, вполне приемлемо. Рассчитанные значения качественно соответствуют общепринятой температурной модели (Honda, Uyeda, 1983; Добрецов и др., 2001) с несколько повышенными значениями для субдуцирующей плиты и пониженными – для астеносферного клина.

Основанные на полученном распределении температур физико-химические расчеты подтверждают классическое разбиение погружающейся плиты на сегменты (Добрецов, Кирдяшкин, 1997), несколько сместив их границы. Верхний (<30 км) характеризуется условиями фации зеленых сланцев при температуре меньше 400°С с незначительной дегидратацией. Следующий сегмент (30–50 км) представляет собой область фации глаукофановых сланцев при 400–700°С. Третий сегмент (>50 км) характеризуется температурами 700–1000°С эклогитовой фации с интенсивной дегидратацией и частичным плавлением. Самая нижняя (~100 км) часть рассматриваемой зоны захватывает самое начало четвертого сегмента – области более полного плавления плиты – возможного источника расплава для вулканизма II типа по классификации (Добрецов и др., 2001).

Расчеты также показали невозможность прохождения флюида через астеносферный клин, в резервуарах которого нет подвижных фаз. Растворы коры, таким образом, имеют астеносферный генезис.

Заключение

После многолетней (1997-2009) работы в данной области, в течение которой были разработаны, реализованы и апробированы различные прикладные компьютерные модели, автору удалось интегрировать полученный опыт в единую методику комплексного компьютерного моделирования. За эти годы были разработаны разнотипные модели различных геохимических объектов, написаны и протестированы необходимые прикладные программные продукты: численная конечноразностная модель тепло- и массопереноса в гидротермальной системе COX; численная термодинамическая модель захоронения токсичных отходов в паровых зонах гидротермальных систем областей развития современного вулканизма; численная модель формирования гидротермального золоторудного месторождения; программное обеспечение для расчета АFC-моделей эволюции расплава; статистическая компьютерная модель эволюции флюидозаполненных трещин в пластичной среде; компьютерная геодинамическая модель коллизии плит; численная физико-химическая модель образования рудоносных гранитоидов; комплексная компьютерная модель зоны субдукции и др.

Цель работы – разработка методики комплексного компьютерного моделирования геохимических объектов на основе объектноориентированного подхода и апробация ее на прикладных тематических моделях геологических объектов – на данный момент выполнена в полном объеме, как и поставленные задачи. Автором весьма детально освоена теория компьютерного моделирования, а также языки программирования Basic, Pascal, C, C++ и соответствующие интегрированные среды разработки, что позволило создавать собственные модели и программные продукты. Были детально проанализированы существующие методы физико-химического моделирования. Во время работы автор принимал активное участие в тестировании и апробации различных версий программного комплекса «Селектор» как в Лаборатории физикохимического моделирования Института геохимии СО РАН (г. Иркутск), так и в Лаборатории геохимии Геологического института СО РАН (г. Улан-Удэ).

Результаты применения предлагаемой методики в комплексном компьютерном моделировании зон субдукции, магматогенногидротермальных систем и коллизии плит позволяют подтвердить некоторые теоретические догадки для сложных в изучении глубоких горизонтов данных объектов и поднять будущие модельные работы на новый, детальный уровень. Подведена вещественная основа для дальнейших исследований в области зон субдукции в виде базы данных, включающей более четырех тысяч равновесных минеральных ассоциаций с

раствором и газовой фазой, рассчитанных исходя из наиболее общих исходных данных. Также заслуживает внимание расчетное распределение температурных полей, наиболее приемлемое с точки зрения петрофизики геологических сред.

Непосредственное развитие своих исследований автор видит в создании нового программного комплекса для расчетов гидродинамической эволюции растворов в трещиновато-пористых средах, органичном соединении этого программного комплекса с ПК «Селектор» и в создании и расчете новых комплексных компьютерных моделей различных геохимических объектов с постоянным повышением вышеописанных параметров корректности.

СПИСОК ОСНОВНЫХ ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ

- Васильев В.И., Жатнуев Н.С. Физико-химическое моделирование минеральных равновесий зон субдукции островных дуг на программном комплексе «Селектор». // Вулканизм и геодинамика: Материалы III Всероссийского симпозиума по вулканологии и палеовулканологии. – Т.1. – Улан-Удэ: Изд-во БНЦ СО РАН, 2006. – С. 128– 132.
- Васильев В.И. Численное моделирование минеральных равновесий зон субдукции на ПК «Селектор». // Геохимия и рудообразование радиоактивных, благородных и редких металлов в эндогенных и экзогенных процессах. Материалы Всероссийской конференции с иностранным участием. Часть 2. – Улан-Удэ: Изд-во БНЦ СО РАН, 2007. – С. 116–118.
- Васильев В.И., Жатнуев Н.С. Реализация модели распределения вещества и тепла при коллизии на языке СИ++ с привлечением ПК «Селектор». // Геохимия и рудообразование радиоактивных, благородных и редких металлов в эндогенных и экзогенных процессах. Материалы Всероссийской конференции с иностранным участием. Часть 2. – Улан-Удэ: Изд-во БНЦ СО РАН, 2007. – С. 119–121.
 Васильева Е. В., Васильев В.И., Жатнуев Н.С. Тектонофизическое моделирование
- Васильева Е. В., Васильев В.И., Жатнуев Н.С. Тектонофизическое моделирование динамики флюидсодержащих трещин в литосфере. // Геохимия и рудообразование радиоактивных, благородных и редких металлов в эндогенных и экзогенных процессах. Материалы Всероссийской конференции с иностранным участием. Часть 2. – Улан-Удэ: Изд-во БНЦ СО РАН, 2007. – С. 122–125.
- Vasiliev V.I., Khrustalev V.K. The numerical thermodynamic model of ore-bearing PZ_{2.3}– granitoids of Vitim plateau. // Granites and Earth's Evolution: Geodynamic setting, Petrogenesis and Ore Content of Granitoid Batholiths: Proceedings of the First International Geologic Conference. – Ulan-Ude: Publishing House BSC SB RAS, 2008. P. 54–56.
- Васильев В.И. Численная физико-химическая модель подъема свободного флюида в зоне субдукции. // Современные проблемы геологии, геохимии и геоэкологии Дальнего Востока России. Материалы II региональной конференции.– Владивосток: Дальнаука, 2008. – С.108–110.
- Васильев В.И., Чудненко К.В., Жатнуев Н.С., Васильева Е.В. Комплексное компьютерное моделирование геологических объектов на примере разреза зоны субдукции. // Геоинформатика, №3, 2009. – С. 15–30.
- Васильев В.И. Массоперенос и минералообразование в магматогенногидротермальных системах по результатам численного физико-химического моделирования. // Вулканизм и геодинамика: Материалы IV Всероссийского симпозиума по вулканологии и палеовулканологии. – Т. 2. – Петропавловск-Камчатский: ИВиС ДВО РАН, 2009. – С. 713–717.