

Бом-Горхонское месторождение вольфрама гюбнеритсульфидно-кварцевого минерального грейзеновой типа формации расположено в юго-западной части Забайкальского края, в 10 км к северо-востоку от села Новопавловка. Вольфрамоносные кварцевые жилы локализованы в гранитах гуджирского магматического комплекса позднеюрского возраста. Жилы имеют северо-восточное простирание, юговосточное падение под углами 15-25°. Мощность жил достигает первых метров в раздувах. Главными минералами жил являются кварц, микроклин, мусковит, пирит, гюбнерит. Среди главных минералов зоны окисления установлены гидроксиды Второстепенные железа, тунгстит И ярозит. минералы представлены флюоритом, тонкочешуйчатым мусковитом, биотитом, альбитом, эпидотом, молибденитом, сфалеритом, висмутином и козалитом. Второстепенные окисленные минералы представлены мартитом, гидрогематитом, бисмутитом и ферримолибденитом. Среди акцессорных минералов установлены адуляр, берилл, апатит, хлорит, карбонаты, шеелит, халькопирит, касситерит, магнетит, гематит, галенит, станин, пирротин, халькозий, ковеллин, тетрадимит, самородный висмут, канниццарит (бисмутоплагионит по (Онтоев, 1974), гладит, хаммарит,

Добыча и обогащение руд ведется с 80-х годов прошлого столетия до настоящего времени. В результате переработки руды по флотационногравитационной технологической схеме получаются товарные вольфрамитовый и сульфидный концентраты. Массивы отходов обогащения размещаются вниз потечению ручьев Зун-Тигня и Бом-Горхон. Они дренируются водами обогатительной фабрики и атмосферными осадками, рН которых 2,7-3,5. При взаимодействии атмосферных осадков с сульфидами руд, концентратов и хвостов обогащения происходит их окисление с образованием разнообразных сульфатов на геохимических барьерах. В предлагаемой работе представлены результаты изучения взаимодействия экспериментального руд месторождения co слабокислыми растворами серной кислоты с целью оценки подвижности рудных элементов и их возможного влияния на окружающую среду.

ица 2. Химический с	octub m									
Компонент	K+Na	Ca	Mg	Al	Fe	Mn	Zn	SO_4^{2-}	Cl	CO_2
Концентрации	2266.2	340.7	255.2	331.5	356.2	61.33	179.1	4623.1	74.8	356.7
(аналитические)					=		and the state of	is to the first that the	BE SAM	amala
Расчет	1757.6	1.9	0.5	-	- 100	- 11	515	2900	73.0	5.5
(окислительные				and the same of			A A R			
условия)	Str		2010			A	than it	Track	是自	
Расчёт	1950.6	116.1	112.5	Time light	386		T June 1	564.1	19.9	5.0
(восстановительные			- To Marin	al free free free free free free free fre						加加加加
условия)		1				1	Will State			Mark 1
	блица 3 стойнин			ий сос	тав мі	икрок	омпон	іентов	воды	тиж)
	блица 3 стойнин	ка (мк			тав мі	икрок Sr	омпон	ентов	воды	нижі
		ка (мк	г/л) Сомпон	іент			Cu	Cd	F	
		са (мк К К	г/л) омпон онцен	іент трациі	И	Sr	Cu	Cd	F	
		ка (мк К К (а	г/л) омпон онцен налит	іент	И	Sr	Cu	Cd	F 340	0
		Ka (MK K K (a P	г/л) омпон онцен налит асчет	іент трациі гическі	и ие)	Sr	Cu	Cd	F	0
		Ka (MK K K (a P	г/л) омпон онцен налит асчет окисли	иент трации гически ительн	и ие)	Sr	Cu	Cd	F 340	0
		Ka (MK K (a P)	г/л) омпон онцен налит асчет окисли словия	иент трации гически ительн	и ие)	Sr 229	Cu 9 144	Cd	F 340 337	3
		Ca (MK K (a P (o y)	г/л) омпон онцен налит асчет окисли словия	иент трации гически ительн	и ие) ые	Sr 229 -	Cu 9 144	Cd	F 340	3

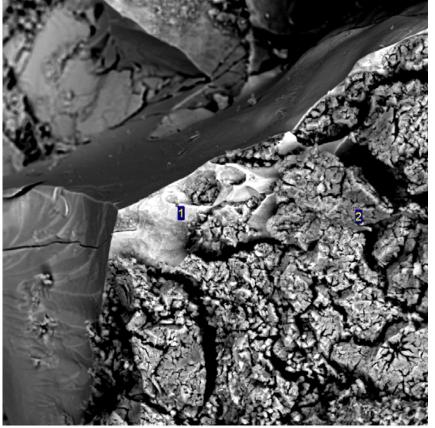
Окислительные условия

Таблица. Равновесные фазы окислительные условия

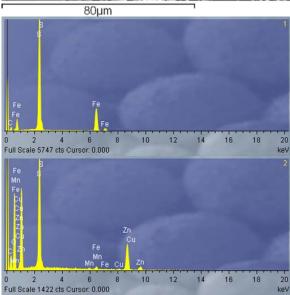
(Алюмо)Силикаты	Карбонаты	Сульфаты	Гидро(Оксиды)
(1.1)	(1.5)	(1.4)	(0.2)
Биотит	Доломит	Zn, Mg, Ca, Al	Гидрогётит
(K(Fe,Mg) ₃ (Al,Si) ₄ O ₁₀ (OH,F) ₂)	Отавит		(FeOOH·nH ₂ O)
Монтмориллонит			вернадит
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			(MnO ₂ ·nH ₂ O)

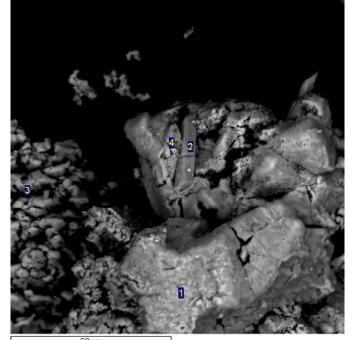
Среди сульфатов преобладают гидратированные соли цинка, в основном бианкит ($ZnSO_4\cdot 6H_2O$) и в небольших количествах ганнингит ($ZnSO_4\cdot H_2O$), бойлеит ($ZnSO_4\cdot 4H_2O$) и госларит ($ZnSO_4\cdot 7H_2O$). Сульфаты магния представлены эпсомитом ($MgSO_4\cdot 4H_2O$), гексагидритом ($MgSO_4\cdot 6H_2O$) и кизеритом ($MgSO_4\cdot H_2O$). Кальций осаждается в виде гипса ($ZnSO_4\cdot 2H_2O$) и ангидрита ($ZnSO_4$), стронций присутствует в фазе целестина ($ZnSO_4$). В незначительных количествах проявляются леонит ($ZnSO_4$), антлерит ($ZnSO_4$), боннатит ($ZnSO_4$). Часть алюминия из раствора переходит в состав ростита ($ZnSO_4OH\cdot 5H_2O$).

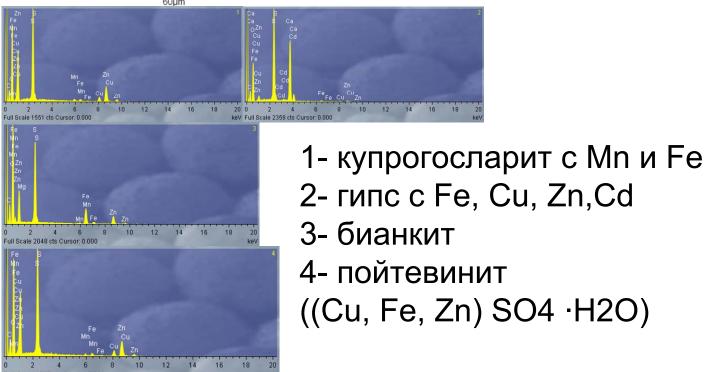
Равновесный раствор имеет кислую среду рH=2.3, электродный потенциал составляет Eh=1034 мв.


Таблица. Равновесные фазы восстановительные условия

(Алюмо)Силикаты	Карбонаты	Сульфаты	Сульфиды	Гидро(Оксиды)
(1.1)	(1.7)	(3.3)	(0.4)	(0.7)
Биотит	Доломит	Zn, Mg,	марказит	гидрогётит
Монтмориллонит	Сидерит	Ca, Al	(FeS ₂)	
	Кутногорит		борнит	
	Стронцианит		(Cu ₅ FeS ₄)	
			гринокит	
			(CdS)	


Кислотность равновесного раствора составляет pH = 6.9, электродный потенциал $Eh = -154 \, \text{мв}$.




В результате изучения продуктов окисления руд и сульфидных концентратов Бом-Горхонского месторождения методами рентгеноструктурного анализа (рис.11-13) и проведения микрозондовых исследований (рис. 14, 15) установлено довольно большое число различных сульфатов. Среди них присутствуют ганнингит, уилкоксит (MgAl(SO₄)₂F·18H₂O), ростит, старкеит, бойлеит ((Zn, Mg)SO₄·4H₂O), роценит (FeSO₄·4H₂O), сидеротил ((Fe,Cu)SO₄·5H₂O), халькантит (CuSO₄·5H₂O), галотрихит (FeAl₂(SO₄)₄·22H₂O), квасцы ((K, Na)Al (SO₄)₂ ·12 H₂O) и др. Кроме того, установлена фаза ((Fe, Ni) SO₄·4H₂O), неизвестная среди природных образований.

1 – пирит 2 - госларит

Выводы

- 1. В результате проведённых экспериментов по кислотному выщелачиванию руд Бом-Горхонского месторождения вольфрама установлено, что максимальной растворимостью характеризуются цинк, двухвалентая медь, марганец и кальций. В меньшей мере это проявлено для двухвалентных железа и свинца. Еще меньшей подвижностью обладают кадмий, вольфрам и стронций.
- 2. Исходя из модельных расчётов, можно полагать, что все рудные элементы и их примеси активно выносятся при контакте со слабокислыми серными растворами, что в природных условиях способствует их миграции из областей хранения продуктов горного производства в окружающие ландшафты.

- 3. Минералогические исследования, выявившие довольно широкий спектр продуктов современного минералообразования, показали, что оно происходит на геохимических барьерах из водотоков, дренирующих склады сульфидных концентратов и массивы отходов обогащения руд, и способствует их очищению от токсичных элементов. Тем не менее, интенсивная миграция токсичных элементов приводит к концентрированию их в водоотстойниках с последующим осаждением в виде сульфатов в окислительных обстановках, а также сульфидов в восстановительных условиях среды.
- 4. Приведенные данные о минеральном составе продуктов современного минералообразования, в основном, свидетельствуют о сходстве минеральных фаз, полученных в результате физико-химического моделирования, и минеральных ассоциаций природных сульфатов, формирующихся в процессах окисления, миграции и последующего минералообразования на геохимических барьерах.

